Нервная система человека осуществляет прием и анализ информации, реагирует на внутренние и внешние воздействия, регулирует всю деятельность организма. Все это становится возможным благодаря специальным клеткам – нейронам, имеющим сложную структуру. Также они имеют еще одно название – нейроциты.
В этой статье расскажем, что такое нейрон, какие функции он выполняет, как различаются между собой эти клетки.
Составляющие клетки
Нейрон состоит из:
- сомы (с диаметром 3–100 мкм);
- ответвлений.
Строение тела (сомы) предполагает ядро и цитоплазму, содержащую органеллы (участвующие в синтезе протеинов). Снаружи оно покрыто оболочкой из двух липидных слоев, которые пропускают жирорастворимые вещества. На поверхности располагаются протеины, необходимые для того, чтобы нейрон мог воспринимать раздражение. Саму оболочку также пронизывают белки – интегральные – они формируют ионные каналы.
В нервной клетке располагается цитоскелет, состоящий из нейрофибрилл. В его функции входит поддержка формы нейрона, а по его нитям перемещаются органеллы и нейромедиаторы.
Нейроны объединяются в отдельные группы, ансамбли, центры, ядра – по наличию той единой деятельности, которую они выполняют. В коре полушарий, мозжечке нервные клетки образуют слои, каждый из которых подчинен выполнению определенной функции.
Между нейронами находятся скопления (нейроглия/ глия). Они составляют примерно 40% всего объема головного мозга. Такие клетки в 3–4 раза меньше нервных. У человека с возрастом происходит процесс замещения нейронов глией.
Мнение врача:
Нейроны головного мозга играют ключевую роль в функционировании человеческого организма. Врачи подчеркивают, что эти нервные клетки обладают удивительной способностью к передаче электрических сигналов, что позволяет им обеспечивать координацию движений, обработку информации и регуляцию внутренних органов. Благодаря сложной структуре и взаимодействию нейронов, человеческий мозг способен к обучению, запоминанию и принятию решений. Врачи признают, что изучение работы нейронов головного мозга является одним из ключевых направлений современной нейронауки и играет важную роль в понимании механизмов мозговой деятельности и развитии методов лечения нейрологических заболеваний.
Отростки
У нейронов присутствуют аксоны (в количестве одна штука) и дендриты (один или несколько).
Аксон
Является длинным выростом цитоплазмы. По нему сигналы следуют от тела к органам и другим нейронам. Диаметр его составляет несколько микронов, а длина у человека составляет несколько десятков сантиметров. Рост зависит от сомы: при повреждении периферические его части могут отмирать, а основная продолжает функционировать.
Строение аксоплазмы (аксональной протоплазмы) предполагает наличие нейрофибрилл (осуществляющих опорные и дренажные функции нейронов), микротрубочек (структур из белка), митохондрий и эндоплазматической сети. У человека аксоны покрыты и образуют мякотные нервные волокна. В такой оболочке находятся олигодендроциты, между которыми существуют небольшие части, освобожденные от нее. На них возникает потенциал действия. Импульс способен распространяться по мякотным волокнам ступенчато – благодаря этому повышается скорость распространения информации.
Дендриты
Короткие и разветвленные отростки. Эти части нейрона являются основными для образования синапсов, которые влияют на нейрон и передают возбуждение к соме. Дендриты, в отличие от аксонов, не обладают миелиновой оболочкой.
То, сколько входных сигналов получает нервная клетка, зависит от разветвленности дендритной сети и ее сложной структуры. Основные функции дендритов заключаются в увеличении поверхности для синапсов, что дает возможность интеграции большого количества информации, поступающей к нервной клетке. Кроме того, они способны генерировать потенциалы действия, воздействовать на возникновение таких потенциалов в аксонах.
Передача импульса идет от дендрита или сомы к аксону. После того, как потенциал действия сгенерирован, он передается от начальной аксональной части обратно к дендритам. Когда аксон сочленяется с сомой последующего нейрона, контакт называют аксо-соматическим. Если с дендритами – аксо-дендритический, а с аксоном другого нейрона – аксо-аксональный.
Строение аксонов подразумевает наличие терминалей – так называемых концевых отделов. Они ветвятся и входят в контакт с другими клетками в организме (мышечными, железистыми и т. п.). У аксона имеется синаптическое окончание – часть, которая контактирует с клеткой-мишенью. Постсинаптическая оболочка такой клетки совместно с синаптическим окончанием формирует синапс, посредством которого передается возбуждение и благодаря которому осуществляется взаимодействие клеток между собой.
Сколько связей способен установить один нейрон? Одна нервная клетка, обладающая возможностью взаимодействовать, может осуществлять 20 000 связей.
Метаболизм в нейроне
Строение нервной клетки подразумевает присутствие также белков, жиров и углеводов. Их основные функции заключены в обеспечении обмена веществ клетки, являются энергетическим, пластическим источником для нее.
Питательные вещества попадают в клетку в виде водного раствора. Продукты обмена веществ удаляются из него в виде такого же раствора.
Протеины предназначены для информационных и пластических целей. В ядре располагается ДНК, в цитоплазме – РНК. Интенсивность метаболизма протеинов в ядре выше, чем в цитоплазме. Этот процесс характеризует высокая скорость обновления протеинов в новых структурных частях (коре), в отличие от старых (мозжечке, спинном мозге).
Жиры и жироподобные вещества служат энергетическим, пластическим материалом. Они обеспечивают высокое электрическое сопротивление в мякотной оболочке. Их обмен осуществляется медленно, а возбуждение нервной клетки (например, во время усиленных умственных нагрузок, переутомлении у человека) грозит уменьшением количества липидов.
Углеводы являются главным энергетическим источником. Глюкоза при поступлении преобразуется в гликоген, вновь превращающийся в глюкозу. Запаса гликогена для покрытия всех затрат не всегда хватает, и это ведет к тому, что источником энергии у человека становится глюкоза в крови.
В нейроне находятся соли натрия, магния, кальция, калия, медь, марганец. Все они участвуют в активации различных ферментов.
Опыт других людей
Нейроны головного мозга – это основные строительные блоки нашей нервной системы, ответственные за передачу информации в мозге. Люди высоко ценят работу нейронов их важную роль в обеспечении нормального функционирования мозга. Многие отмечают, что именно благодаря активности нейронов мы можем мыслить, чувствовать, запоминать и принимать решения. Они считают нейроны своего рода “мозговыми посыльными”, которые обеспечивают связь между различными частями мозга и контролируют все наши действия и реакции. Все это делает нейроны головного мозга одним из самых удивительных и сложных элементов человеческого организма.
Какие бывают нейроны
Существуют различные классификации.
Распространена классификация по числу количества отростков, их расположению.
- Мультиполярные нейроны – наиболее многочисленны в ЦНС. Это клетки с одним аксоном и несколькими дендритами.
- Биполярные нейроны головного мозга – такие клетки, у которых в наличии по одному аксону и дендриту. Расположены в глазной сетчатке, обонятельной эпителиальной ткани и луковице, слуховом ядре и вестибулярном.
В спинном мозге встречаются и другие виды (безаксонные, псевдоуниполярные).
Ученые выносят отдельно зеркальные нейроны. Это клетки, в которых возбуждение происходит не только при выполнении действия, но и при наблюдении за его выполнением у другого (эксперименты проводились пока лишь на животных). Изучение деятельности этих клеток является перспективным направлением в биологии: считается, что они являются основными в процессе обучения языку, понимании действий и эмоций другого человека.
В зависимости от функции, клетки делятся на:
- афферентные;
- эфферентные;
- вставочные.
Отдельно отмечаются также секреторные, функции которых заключаются в продуцировании нейрогормонов (к примеру, в ).
Афферентные
Отвечают за передачу сигналов от рецепторов в ЦНС, бывают первичные и вторичные. Расположение тел первых – в спинальных ядрах. Они непосредственно связаны с рецепторами. Сомы вторичных нейронов расположены в зрительных буграх и ответственны за передачу сигнала в отделы, лежащие выше. Напрямую такие нейроны с рецепторами не связаны, а получают импульсы от других нейроцитов. Нейрон, относящийся к этой группе, также могут называть – чувствительный, сенсорный, рецепторный.
Реакция клетки проходит 5 стадий:
- трансформация импульса внешнего раздражения;
- генерирование чувствительного потенциала;
- его иррадиация по нервной клетке;
- появление генераторного потенциала;
- генерирование нервного сигнала.
Двигательные
Эфферентные (двигательные, моторные, центробежные) передают импульс к остальным органам и центрам. Например, нервные клетки двигательной зоны конечного мозга – пирамидные – посылают сигнал мотонейронам спинного мозга. Главная особенность двигательных нейронов – аксон с большой протяженностью, который обладает высокой скоростью передачи возбуждения. Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи обеспечивают такие внутриполушарные и межполушарные отношения, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.
Выделяют преганглионарные и постганглионарные двигательные нейроны . Преганглионарные нейроны симпатического отдела расположены в спинном мозге, а парасимпатического – в среднем и продолговатом мозге. Постганглионарные находятся в стенках иннервируемых органах и нервных узлах. Преганглионарные аксоны (в составе нескольких черепных нервов) образуют синапсы с постагнглионарными нейронами.
Интернейроны
Вставочные нейроциты (ассоциативные, промежуточные, интернейроны) осуществляют взаимодействие между клетками: обрабатывают информацию, которую получают от чувствительных нейронов, отправляют ее к другим промежуточным или двигательным нейронам. Они меньше по размерам, чем эфферентные или афферентные, могут быть веретенообразными, звездчатыми, корзинчатыми. Их аксоны короткие, а дендритная сеть обширна.
Это самые распространенные клетки в нервной системе (примерно 95%) и головного мозга, в частности (большая часть всех нейронов больших полушарий – вставочные). Терминали их аксонов заканчиваются на нервных клетках своего центра, что обеспечивает их интеграцию.
Один вид ассоциативных нейроцитов получает информацию от других центров, после чего распространяет ее на клетки своего центра. То, сколько параллельных путей задействовано в передаче сигнала, влияет на время сохранения информации в центре и усиление влияния импульса.
Другие вставочные нейроциты получают сигнал от моторных собственного центра, после чего отсылают его назад в свой же центр. Таким образом, образуются обратные связи, которые позволяют продолжительно сохранять информацию.
Тормозные промежуточные приходят в возбуждение посредством прямых импульсов, которые поступают в их центр, или сигналов, следующих из этого же центра по обратным связям.
У человека и высших животных миелиновая мембрана и совершенный метаболизм обеспечивают незатухающее возбуждение по нервным волокнам. Безмиелиновые оболочки не могут обеспечить скорую компенсацию энергетического расхода на возбуждение, поэтому распространение сигнала идет, ослабевая. Это характерно для животных с низкоорганизованной нервной системой.
Как видно, непосредственными нервными клетками, которые локализованы в головном мозге, являются интернейроны, а остальные (двигательные, в том числе преганглионарные, постганглионарные, и чувствительные первичные и вторичные) регулируют деятельность мозга вне его самого.
Нейрон является структурной единицей нервной системы и, в частности, головного мозга. Сложное строение нервной клетки обеспечивает прием, анализ и посыл информации. Между нейронами существуют тесные связи, которые обеспечивают слаженную работу всего механизма системы. Самыми многочисленными в головном мозге являются промежуточные (выделенные по функциональным особенностям) и мультиполярные нейроны (по строению).
Частые вопросы
Как активировать нейроны головного мозга?
Спортивная ходьба, бег трусцой, танец, плавание и езда на велосипеде — вот примеры отличных аэробных упражнений. И это именно те упражнения, которые способны помочь организму в формировании новых нейронов, улучшающих состояние и возможности центральной нервной системы.
Как восстановить нейроны в головном мозге?
— Клетки головного мозга, нейроны, при их гибели не способны восстанавливаться. Но мозг человека способен перестроить свои функциональные связи, создавая новые. Это нейропластичность.
Какие функции выполняют нейроны?
Функции нейронов: генерирование и передача нервных импульсов, обработка и хранение поступающей информации. Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам. Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов.
Чем питаются нейроны головного мозга?
Некоторые клетки могут получить энергию из жиров, но самые важные – нейроны – питаются исключительно глюкозой (красные клетки крови тоже). Глюкозу ваше тело может сделать из любых видов сахара и крахмала, так что вашему мозгу хватит питания, даже если все продукты, которые вы потребляете, будут без добавленного сахара.
Полезные советы
СОВЕТ №1
Изучите основные функции нейронов головного мозга, такие как передача нервных импульсов, обработка информации и контроль над движениями.
СОВЕТ №2
Познакомьтесь с различными типами нейронов, такими как моторные, сенсорные и межнейронные, чтобы понять их специализацию и взаимодействие.
СОВЕТ №3
Изучите структуру нейронов, включая дендриты, аксоны и синапсы, чтобы понять, как происходит передача сигналов между нейронами.